On an inverse boundary value problem for a nonlinear elastic wave equation
نویسندگان
چکیده
We consider an inverse boundary value problem for a nonlinear elastic wave equation which was studied in [1] . show that all the parameters appearing can be uniquely determined from measurements under certain geometric assumptions. The proof is based on second order linearization and Gaussian beams. Nous considérons un problème avec données au bord, pour une équation des ondes élastiques non-linéaire étudiée précédemment dans l'article Sous certaines hypothèses géométriques, nous prouvons que tous les paramètres constitutifs de l'équation peuvent être déterminés manière unique partir bord. La preuve fait appel à linéarisation deuxième ordre ainsi qu'à faisceaux gaussiens.
منابع مشابه
Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملTriple Positive Solutions for Boundary Value Problem of a Nonlinear Fractional Differential Equation
متن کامل
existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
this paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. we show that it has at least one or two positive solutions. the main tool is krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملA Boundary Value Problem for the Wave Equation
Traditionally, boundary value problems have been studied for elliptic differential equations. The mathematical systems described in these cases turn out to be “well posed”. However, it is also important, both mathematically and physically, to investigate the question of boundary value problems for hyperbolic partial differential equations. In this regard, prescribing data along characteristics ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2021
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2021.07.005